Niederwassersgerinne
Niederwassergerinne

Autoren
Sylvia Durrer
Arthur Kirchhofer
Ueli Schächli
André Seippel
Pascal Sieber
Christian Tesini

Illustrationen
Maude Léonard-Contant

Liebe Leserinnen und Leser, wir wollen Sie anregen und ermuntern, sich mit dem Thema Niederwassergerinne vertieft zu auseinander zu setzen. Lassen sie sich von dieser Lektüre und ihrer umfangreichen Beispielsammlung inspirieren.

Kanton Luzern
Verkehr und Infrastruktur (vif)
Dr. Albin Schmidhauser

Kanton Aargau
Abteilung Wald
Alain Morier

Kanton Zürich
Amt für Abfall, Wasser, Energie und Luft (AWEL)
Dr. Jürg Suter
1 Definition

Woher kommt der Begriff?

Vielfältige Niederwasserformen

Ganz anders präsentiert sich das Erscheinungsbild mäandrierender Fließgewässer bei Niederwasser. Während sich im Bereich des Prallhangs ein tiefer Kolk mit ständiger Wasserführung bildet, nehmen die Fliesstiefen zwischen den Mäanderbögen deutlich ab. Der Niederwasserbereich zeigt eine äusserst grosse morphologische Vielfalt mit tiefen Becken und Furten mit geringen Abflusstiefen (Bild 1-3).

→ 1-3 Ein typischer Vertreter eines mäandrierenden Bergbachs: La Rèche im Val de Réchy, VS.

↓ 1-1 Bolsternbach in Zell, ZH, 1950. Die Korrektion weist eine streng normierte «Niederwasserrinne» auf.

↓↓ 1-2 In einem verzweigten Fluss sind mehrere Teilgerinne wasserführend. Maggia, TI.

Nochmals anders zeigt sich das Niederwassergerinne in künstlich gestalteten Fließgewässern. Im Siedlungsgebiet mit engen Platzverhältnissen ist wenig Spielraum für den Niederwasserbereich vorhanden. Dennoch können ansprechende Niederwassergerinne gestaltet werden (Bild 1-5).

Außerhalb der bewohnten Gebiete sind bei ausreichendem Raumangebot auch naturnahe Verhältnisse anzutreffen. Revitalisierte Gewässer haben einen ökologisch vielfältigen Niederwasserbereich (Bild 1-6).
Definition Niederwassergerinne

Als Niederwassergerinne wird derjenige Bereich eines Fließgewässers bezeichnet, der bei niedrigem Wasserstand (Niederwasser) durchflossen wird. Das Niederwasser ist derjenige Abfluss, welcher dem Q_{347} entspricht.

Das Q_{347} wird im Bundesgesetz über den Schutz der Gewässer (Gewässerschutzgesetz, GSchG, SR814.20, Artikel 4) wie folgt definiert:

Abflussmenge, die, gemittelt über zehn Jahre, durchschnittlich während 347 Tagen des Jahres erreicht oder überschritten wird und die durch Stauung, Entnahme oder Zuleitung von Wasser nicht wesentlich beeinflusst ist.

1-6 Die mäandrierende Linienführung sorgt für ein strukturreiches Niederwassergerinne mit Tiefstellen, flachen Uferpartien und schnell und langsam fließenden Abschnitten. Hofibach in Affoltern am Albis, ZH.
2 Gesetzliche Rahmenbedingungen

Gemeinsamer Grundsatz

All den aufgeführten Bundesgesetzen ist eines gemeinsam: Die Erhaltung und Förderung von naturnahen Gewässern und ihrer Flora und Fauna.

• Bundesgesetz über den Natur- und Heimatschutz (NHG) vom 1. Juli 1966
• Bundesgesetz über die Fischerei (BGF) vom 21. Juni 1991

2-1 So darf heute kein Gewässer mehr ver- oder ausgebaut werden. Ein monotoner, strukturloser Bach mit einer harten Betonsohle bietet nur wenig Lebensraum für Wasserlebewesen. Gislibach, Tegerfelden, AG.
Das Niederwassergerinne trägt entscheidend zur Verwirklichung dieses grundsätzlichen Anspruchs bei. Der dauerhaft benetzte Teil des Gewässers ist die Grundlage für die aquatische Lebensgemeinschaft in einem Gewässer (Kapitel 3). Dementsprechend sind diejenigen Artikel einer Verordnung relevant, welche die Ökologie betreffen. Zu diesen Bundesverordnungen gehören:

- Gewässerschutzverordnung (GSchV) vom 28. Oktober 1998
- Verordnung über den Wasserbau (WBV) vom 2. November 1994
- Verordnung zum Bundesgesetz über die Fischerei (VBGF) vom 24. November 1993

Gehört man davon aus, dass sich das Wasser unter natürlichen Bedingungen immer selbst ein Niederwassergerinne im Bach- oder Flussbett schafft, so soll dies auch bei technischen Eingriffen in ein Gewässer gewährleistet werden. Gemäß Art. 4 WBG und Art. 37 GSchG muss bei Eingriffen in das Gewässer dessen natürlicher Verlauf möglichst beibehalten oder wiederhergestellt werden. Diese Bestimmung ist selbstredend auch für geringe Abflüsse zu beachten.

Werden die Fische als repräsentative Bewohner eines Fließgewässers betrachtet, so gibt Art. 7 BGF vor, dass Gewässerabschnitte, die dem Laichen und Aufwachsen von Fischen dienen, zu erhalten sind, während Gewässerabschnitte, die solche Anforderungen nicht erfüllen, verbessert werden müssen. Ein Biotop oder ein Gewässerabschnitt, in welchem nach der VBGF gefährdete Fische und Krebse vorkommen, wird nach Art. 14 NHV als schützenswert bezeichnet. Diese sehr allgemeinen Grundsätze werden in verschiedenen Artikeln ergänzt, bis hin zu konkreten Angaben für die Gestaltung eines Gewässers respektive des Niederwassergerinnes.

Tabelle 2-2 fasst die wichtigsten Gesetzesartikel zusammen. Dabei handelt es sich vorwiegend um jene gesetzlichen Bestimmungen, welche den Bau, die Gestaltung und die natürlichen Funktionen eines Fließgewässers betreffen.
<table>
<thead>
<tr>
<th>Stichwort</th>
<th>Gesetzesartikel</th>
<th>Ergänzungen und Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewässerraum</td>
<td>GSchG, Art. 36a, GSchV, Art. 41a, 41c und 41d</td>
<td>Der Gewässerraum dient unter anderem dazu, dass das Gewässer seine natürliche Funktion erfüllen kann und gleichzeitig die Hochwassersicherheit gewährleistet ist. Das Niederwassergerinne ist innerhalb des Gewässerraums gewissermaßen das «ökologische Zentrum» für die aquatische Fauna und Flora. Das Niederwassergerinne ist nur ein kleiner Teil des ganzen Gewässerraums. Der insgesamt zur Verfügung stehende Platz hat bei einer Revitalisierung Auswirkungen auf die Gestaltung des Niederwassergerinnes.</td>
</tr>
<tr>
<td>Erhalt und Revitalisierung</td>
<td>GSchG, Art. 37, WBG, Art. 4, BGF, Art. 7</td>
<td>Der natürliche Verlauf eines Gewässers muss unter Berücksichtigung anderer Interessen (z.B. Hochwasserschutz, Ortsbildschutz, Landschaftsschutz) möglichst beibehalten oder wiederhergestellt werden. Eingriffe in das Gewässer dürfen nur ausgeführt werden, wenn dadurch die ökologischen Funktionen nicht beeinträchtigt werden.</td>
</tr>
<tr>
<td>Gewässersohle</td>
<td>BGF, Art. 9, GSchG, Art. 43a</td>
<td>Die Gewässersohle muss so beschaffen sein, dass sich die natürlich vorkommenden und am Gewässergrund laichenden Fischarten fortpflanzen können. Dazu ist ein funktionierender Geschiebehaushalt erforderlich. Bei beeinträchtigtem Geschiebetrieb müssen Massnahmen für die Sanierung ergriffen werden.</td>
</tr>
<tr>
<td>Strukturvielfalt</td>
<td>BGF, Art. 9</td>
<td>Die Gestaltung des Niederwassergerinnes erfolgt unter anderem auch nach den Vorgaben der fischereirechtlichen Bewilligung (Art. 8 BGF). Darin kann bei technischen Eingriffen in das Gewässer unter anderem die Pflicht zur Gestaltung von Fischunterständen enthalten sein.</td>
</tr>
<tr>
<td>Fliessgeschwindigkeit</td>
<td>BGF, Art. 9</td>
<td>Das Niederwassergerinne ist so zu gestalten, dass sich bei Niederwasser eine Fliessgeschwindigkeit einstellt, die der Fließgewässerzonzierung und den Ansprüchen des natürlichen Artenspektrums gerecht wird.</td>
</tr>
</tbody>
</table>
3 Ökologie

Die ökologische Bedeutung des Niederwassergerinnes

Einige Bewohner der Fließgewässer wie beispielsweise die Fische sind sehr mobil und können sich wechselnden Wasserständen verhältnismäßig leicht anpassen. Andere dagegen wie Krebse, Muscheln oder Insektenlarven sind nur wenig mobil, leben auf oder in Sedimenten und sind damit kleinräumig an ihr einmal besetztes Habitat gebunden. Für die Atmung sind sie jedoch auf eine Wasserschicht angewiesen, aus der sie mit ihren Kiemen oder über die Haut den lebensnotwendigen Sauerstoff beziehen können. Das Überleben dieser Organismen ist demnach nur auf den Flächen möglich, die auch bei geringem Abfluss benetzt sind. Die Ausdehnung des Niederwassergerinnes ist somit der limitierende Faktor für die biologischen Produktionsmöglichkeiten des Gewässers und damit für den aquatischen Lebensraum.

Gefälle und Gewässergroße

3-1 Natürlich strukturiertes Gewässer mit grosser Vielfalt an Kleinebensräumen auch bei Niederwasser. Bünzaue in Möriken-Wildegg, AG.
Wassertiefe

Die Wanderroute befindet sich also meistens im Niederwassergerinne (im Talweg) und muss frei von Hindernissen sein, damit die Rückeroberung des Lebensraums erfolgreich ist. Größere und schwimmstarke Fische können kleine Hindernisse überspringen, kleinere Fische dagegen müssen in der Lage sein, solche Stufen schwimmend zu überwinden. Für einige Arten wie die Groppe, welche keine Schwimmblase hat und deshalb nur eingeschränkt im freien Wasser schwimmen kann, oder für Jungtiere mit noch geringer Leistungsfähigkeit bilden bereits Überfälle von wenigen Zentimetern unüberwindbare Hindernisse (Bild 3-2). Für alle aquatischen Wirbellosen, die nicht springen können, gilt dies in noch viel stärkerem Masse.

Bachflohkrebse wandern gegen die Strömung flussaufwärts und sind auf einen hindernisfreien Weg angewiesen. Aquatische Insekten dagegen haben eine andere Strategie, um bei Hochwasser verlorene Lebensräume wieder zu besiedeln. Die erwachsenen Tiere fliegen zur Fortpflanzung flussaufwärts und deponieren ihre Eier im Oberlauf der Gewässer (Bild 3-3). In natürlichen Gewässern der flacheren Regionen kommen ausgeprägte Stufen mit Überfällen oder Abschnitte mit sehr großem Gefälle, die als Wanderhindernisse wirken, nur selten vor. Bei natürlicher Sohlenmorphologie wird das Gefälle in der Regel durch Geschiebe so ausgeglichen, dass ein durchgehender Wasserstrom entsteht (Bild 3-4).

3-2 Auch kleine Schwellen von 20 cm Höhe bilden Wanderhindernisse für wirbellose Kleintiere und schwimmschwache Fische. Arbogne, FR.

3-3 Eintagsfliegen leben als Larven auf oder unter Steinen der kiesigen Bachsohle. Als Adulte fliegen sie flussaufwärts, um ihre Eier abzulegen.
Tiefen- und Strömungsvariabilität

Wasser- und Ufervegetation

Vorbild Natur

3-7 Die blauflügelige Prachtlibelle ist eine anspruchsvolle Bewohnerin sauerstoffreicher Bäche mit Pflanzenbewuchs.
Die Fliessgewässerregionen

In gleichem Masse verändert sich die Zusammensetzung der Wirbellosenfauna des Gewässergrundes. An starke Strömung gebundene, Kälte liebende Arten mit einem hohen Sauerstoffbedarf werden durch tolerantere Arten abgelöst, die sich auch in geringer Strömung und bei hohen Temperaturen durchsetzen können. Bei geringem Gefälle kann der Flussgrund zudem durch höhere Wasserpflanzen besiedelt werden und dementsprechend verändern sich Habitat- und Nahrungsangebot für die Wirbellosenfauna.

Minimale Wassertiefen für Fische

Die minimal notwendige Wassertiefe für die freie Fischwanderung im Talweg ist artspezifisch. Die Körperhöhe (KH) einer Art wird in der Regel relativ zur Körperlänge (TL) angegeben. In der nachfolgenden Tabelle sind die Daten für ausgewählte Arten zusammengestellt (Adam & Lehmann 2011, EBEL 2013). Die minimal notwendige Wassertiefe T berechnet sich aus:

\[T[cm] = 3 \times KH_{rel.} \times TL[cm] \]

Ausgegangen wird dabei von der durchschnittlichen Länge geschlechtsreifer Fische.

<table>
<thead>
<tr>
<th>Art</th>
<th>wissenschaftlicher Name</th>
<th>KH relativ</th>
<th>TL adult [cm]</th>
<th>min Tiefe [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachforelle</td>
<td>Salmo trutta</td>
<td>0.19</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>Seeforelle</td>
<td>Salmo trutta</td>
<td>0.19</td>
<td>70</td>
<td>40</td>
</tr>
<tr>
<td>Asche</td>
<td>Thymallus thymallus</td>
<td>0.18</td>
<td>40</td>
<td>22</td>
</tr>
<tr>
<td>Nase</td>
<td>Chondrostoma nasus</td>
<td>0.25</td>
<td>50</td>
<td>38</td>
</tr>
<tr>
<td>Barbe</td>
<td>Barbus barbus</td>
<td>0.17</td>
<td>50</td>
<td>26</td>
</tr>
<tr>
<td>Egli</td>
<td>Perca fluviatis</td>
<td>0.28</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>Brachsen</td>
<td>Abramis brama</td>
<td>0.30</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>Rotauge</td>
<td>Rutilus rutilus</td>
<td>0.25</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>Aal</td>
<td>Anguilla anguilla</td>
<td>0.05</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>Schleie</td>
<td>Tinca tinca</td>
<td>0.22</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
<td>0.30</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>Wels</td>
<td>Silurus glanis</td>
<td>0.22</td>
<td>100</td>
<td>66</td>
</tr>
</tbody>
</table>
4 Ziele und Nutzen

Veränderte Vorstellungen

Mit dem Verlust oder dem Rückgang verschiedener Tier- und Pflanzenarten in den Fließgewässern und mit der Änderung der gesetzlichen Vorgaben haben sich auch die gewässerorientierten Ziele des Menschen gewandelt. Unter Abkehr von künstlichen Kanälen versucht man heute, meist unter erschwerten Bedingungen, einem Gewässer einen möglichst natürlichen Charakter zurückzugeben.

4-1 Der schmale Wasserfilm ist nicht nur ökologisch wertlos, sondern auch zum Spielen völlig uninteressant. Orisbach in Liestal BL, 1943.
Gewässermittelpunkt

Ökologischer Nutzen

4-2 Nur der dauernd benetzte Bereich ist als Lebensraum für die substratabhängige Algenflora und für untergetauchte Wasserpflanzen besiedelbar. Leugene in Pieterlen, BE.
Niederwassergerinne und Gewässerraum

Ziele

Den grössten Nutzen von einem natürlichen Niederwassergerinne haben die aquatischen Lebewesen. Dementsprechend hat der Bau eines Niederwassergerinnes vor allem auf eine positive ökologische Entwicklung des Gewässers abzuzielen. Die im GSchG (Anhang 1, Art. 1) formulierten ökologischen Ziele für die Oberflächengewässer geben vor, dass

- die Lebensgemeinschaften von Pflanzen, Tieren und Mikroorganismen naturnah und standortgerecht sein sollen und sich selbst reproduzieren und regulieren können;
- die Lebensgemeinschaften eine Vielfalt und eine Häufigkeit der Arten aufweisen, die typisch sind für nicht oder nur schwach belastete Gewässer des jeweiligen Gewässertyps.

Diese Ziele gelten für alle Gewässer und müssen bei jedem Abfluss erfüllt werden. Sie sind somit auch für das Niederwassergerinne als verbindlich zu betrachten.

Damit die ökologische Qualität eines Gewässers auch langfristig sichergestellt werden kann, ergeben sich weitere Ziele. Das Niederwassergerinne soll

- seine ökologische Qualität über lange Zeit halten können;
- sich durch eigendynamische Prozesse selber erschaffen und erneuern;
- als Teil des Gewässerraums in das gesamte Erscheinungsbild des Gewässers oder der Situation passen (z.B. Wahl der Bauelemente, Einbindung in den Dorfkern);
- möglichst unterhalts- und pflegearm sein.

4-3 Im natürlichen Niederwassergerinne sind Laichplätze und Fischunterstände mit grösserer Wassertiefe (rechts) mit ruhigen, wenig tiefen Jungfischhabitationen (Mitte und links) hindernisfrei verbunden. Damit ist der Austausch zwischen den Lebensräumen für alle Altersstadien bei unterschiedlichen Wasserständen gewährleistet. Venoge, VD.
5 Grundsätze

Rechtliche Vorgaben

Die Frage nach dem «Bau von Niederwassergerinnen» stellt sich meist im Zusammenhang mit dem Ausbau des Hochwasserschutzes und der Aufwertung oder Revitalisierung eines Gewässers. Dazu werden Massnahmen am und im Gewässer geplant, die insbesondere das Wasserbaugesetz (WBG), das Gewässerschutzgesetz (GSchG) und das Bundesgesetz über die Fischerei (BGF) zu berücksichtigen haben. In diesen Gesetzen wird gefordert, dass bei Verbauungen und Korrekturen von Fliessgewässern der natürliche Verlauf des Gewässers möglichst beibehalten oder wiederhergestellt werden muss. Dabei sind Gewässer und Gewässerraum so zu gestalten, dass a) sie einer vielfältigen Tier- und Pflanzenwelt als Lebensraum dienen können; b) die Wechselwirkungen zwischen ober- und unterirdischem Gewässer weitgehend erhalten bleiben; c) eine standortgerechte Ufervegetation gedeihen kann (WBG Art. 4, GSchG Art. 37). In überbauten Gebieten kann die Behörde Ausnahmen bewilligen.

Diese Vorgaben gelten auch für den Bau von Niederwassergerinnen. Dies bedeutet, dass sich die zu planenden Massnahmen möglichst am natürlichen Zustand orientieren sollen. Der natürliche Zustand ist zu erheben oder anhand von theoretischen Ansätzen oder Referenzgewässern herzuleiten. In überbauten Gebieten, das heisst bei eingeengten Gewässern ohne Möglich-keit zur Aufweitung, sind die Anforderungen a) bis c) möglichst zu berücksichtigen.

Niederwasserbereiche in natürlichen Gewässern

Natürliche Gewässer zeigen eine verzweigte oder mäandrierende Gerinneform sowie Übergangsformen (Bild 5-1). Infolge der unterschiedlichen Strömungsverhältnisse bilden sich charakteristische Sohlenformen wie Rinnen, Furten, Schnellen und Kolke aus. Diese prägen die Morphologie der Sohle und damit den Niederwasserbereich. Tiefstellen (Rinnen, Kolke) bilden Lebensräume mit grosser Wassertiefe bei Niederwasserabfluss. In Furten und Schnellen ist die Abflusstiefe klein und die Fließgeschwindigkeit gross. Oft besteht ein Talweg mit einer Abflusskonzentration bei Niederwasser, sodass auch in kleinen Gewässern die Wassertiefe für den Fischaufstieg ausreichend ist.

Bei Gewässern mit großem Gefälle ist das Längenprofil abgestuft und es bilden sich ausgeprägte Furt-Kolk-Sequenzen. Bei Gewässern mit kleinem Gefälle ist das Längenprofil ausgeglichener, und die Abflusstiefe variiert weniger zwischen Furt und Rinnen.

Die Ausbildung des Niederwasserbereichs ist massgeblich abhängig von der Linienführung, den Hindernissen (Fels, Blöcke, Wurzelwerk, Totholz), dem anstehenden Sohlenmaterial, der Geschiebeführung und der Abflusstiefennahme. Bei ausgeprägten Mäandern, bedeutenden Hindernissen und leicht mobilisierbarem Sohlenmaterial entwickelt sich eine ausgeprägte Breiten- und Tiefenvariabilität mit vielfältigem Niederwasserbereich (Bilder 5-6 und 5-7).

Gewässer mit einer groben und abgepflasterten Sohle zeigen oft eine geringe Tiefenvariabilität und entsprechend gering ausgeprägt ist der Niederwasserbereich (Bild 5-4). Ebenso gering ausgeprägt kann der Niederwasserbereich bei Gewässern mit hoher Geschiebeführung und Auflandungstendenz sein (Bild 5-5).

Niederwasserbereiche in künstlichen und beeinträchtigten Gewässern

In eingeengten und kanalisierten Gewässern ist die Sohle meist eben und ohne Niederwasserbereich, sodass das Niederwasser auf die gesamte Sohle verteilt und die Abflusstiefe gering bleibt (Bild 5-2). Früher wurden oft prismatische Niederwassergerinne in die Sohle eingebaut, die zwar zu grössterer Abflusstiefe führten, aber wegen der hohen Fließgeschwindigkeit über lange Strecken nicht passierbar waren und keinen Lebensraum boten.

Damit auch kanalisierte Gewässer einen ausreichenden Lebensraum bieten können und die Längsvernetzung gewährleistet werden kann, sind naturnahe Strukturen und Habitate wie Tiefstellen, Schnellen, Flach- und Ruigwasserzonen sowie naturnahe Ufer zu schaffen (Diagramm 5-2, rechts). Im Kapitel 7 sind mögliche Maßnahmen aufgeführt.

Natürlichkeitsgrad und Massnahmen

Beim einem naturnahen Gewässer sind ergänzende Massnahmen denkbar, welche die Entwicklung eines Niederwasserbereiches unterstützen. Bei einem naturfremden Gewässer ist eine starke Möblierung angezeigt.
Befindet sich ein Gewässer oberhalb der Diagonalen, so ist es übermässig möbliert. Dies entspricht den Verhältnissen in einem Zoo, wo auf kleinem Raum eine möglichst grosse Lebensraumvielfalt angestrebt wird. Dadurch können aber die Dynamik und die Erneuerung des Lebensraums eingeschränkt werden.

5-4 Sohle durchsetzt mit Residualblöcken ohne erkennbaren Talweg. Sihl bei Finsterseebrugg, ZG/ZH.

5-5 Pendelndes Niederwassergerinne in Geschiebeablagerungen ohne ausgeprägte Tiefstellen. Necker Ampferenboden, SG.
Einflussgrössen für Eigendynamik

Das Potenzial eines Gewässers, eigendynamisch einen vielfältigen Niederwasserbereich zu entwickeln, ist vorwiegend von folgenden Einflussgrössen abhängig (Diagramm 5-8):

- Pendelbreite und Mäanderamplitude: Hat ein Gewässer ausreichend Raum, um die ihm eigene Linienführung zu entwickeln, so bildet sich eine Abfolge von Tiefstellen aus, die durch einen pendelnden Talweg miteinander verbunden sind (Bild 5-1). Wird das Gewässer stark eingeengt, so wird die Sohle eben und strukturlos.
- Eine grosse Breitenvariabilität führt zu einer strukturierten Sohle mit Furten, Schnellen, Tiefstellen, Bänken, Querströmungen und entsprechend hoher Strömungs- und Habitatvielfalt. Im natürlichen Zustand wird die Breitenvariabilität durch Bewuchs, Totholz, Fels, Residualblöcke und Ähnliches gefördert. Fehlt die Breitenvariabilität, so sind Sohle und Ufer kaum strukturiert.

Sind bei Gewässern diese Eigenschaften erfüllt, so bestehen optimale Bedingungen, damit sich ein vielfältiger Niederwasserbereich entwickeln kann. Bei beeinträchtigten Gewässern sind bevorzugt die limitierenden Einflussgrössen aufzuwerten. Fehlt aber beispielsweise ein ausreichender Gewässerraum zur Entwicklung eines pendelnden Gerinnes, so sind die dadurch entstehenden Defizite zu kompensieren, indem die anderen Einflussgrössen optimiert werden.
Gewässergrösse

Bei kleinen Gewässern kann durch Massnahmen im Ufer- und Sohlenbereich eine grosse Wirkung bezüglich Morphologie und Strömungsverhältnissen erzielt werden. Daher können selbst bei stark beeinträchtigten Gewässern durch ausreichend viele Massnahmen gute Verhältnisse erzielt werden.

Bei grossen Gewässern ist es fraglich, ob die Eingrenzung eines Niederwasserbereichs durch bauliche Massnahmen sinnvoll ist, weil dadurch die Gewässerdynamik und die Lebensräume im Uferbereich beeinträchtigt werden. Die Bilder 5-9 und 5-10 zeigen die Sihl bei Zürich mit und ohne seitliche Begrenzung. Mit der Eingrenzung kann zwar insgesamt eine grössere Wassertiefe gewährleistet werden, Pionierstandorte fehlen jedoch nahezu vollständig. Entlang der Ufer fehlt die Dynamik und die seitlich angrenzenden Flächen drohen zu verbuschen, wodurch der Hochwasserschutz beeinträchtigt wird. Bei grossen Gewässern sind daher exponierte Querbauten (Buhnen, Raubäume, Residualblöcke) geeignet, um lokale Tiefstellen und damit gute Lebensräume bei Niederwasserabfluss zu schaffen.

![Bild 5-9](image1.png) Der Niederwasserbereich mit Furt-Kolk-Sequenzen wird seitlich durch Findlinge, Bollensteine und Grobschotter (jetzt bewachsen) eingegrenzt. Damit wird die Abflusstiefe bei Niederwasser erhöht, die Dynamik jedoch stark eingeschränkt. Zudem erfordern die mit Gras bewachsenen Bänke einen regelmässigen Unterhalt. Sihl, Zürich, Höcklerbrücke.

![Bild 5-10](image2.png) Aufgeweiteter Gerinne mit Bänken, variablen Strömungsverhältnissen und lockerem Substrat, aber eher wenig Tiefstellen. Sihl, Zürich, vor Eiswehr.

Abhängigkeiten in der Systemanalyse:

- **Istzustand** und Zielzustand sind projektbezogen. Der Referenzzustand entspricht weitgehend dem natürlichen Zustand.
- Das mit verhältnismäßigem Aufwand realisierbare Aufwertungspotenzial entspricht der Reduktion der Defizite. Aus den Konsequenzen nicht veränderbarer Restriktionen, aber auch irreversibler Landschaftsveränderungen, die dem Istzustand zugrunde liegen, resultieren die verbleibenden Defizite.
Methodik der Systemanalyse

Istzustand

Referenzzustand

Defizitanalyse

Die Möglichkeiten zur Reduktion der Defizite entsprechen dem Entwicklungspotenzial und den Massnahmen, die mit verhältnismässigem Aufwand realisierbar sind. Restriktionen am Gewässer, die nicht mit vertretbarem Aufwand beseitigt werden können, beeinflussen die verbleibenden Defizite. Die Defizitanalyse und die Erwägungen zu verbleibenden und reduzierbaren Defiziten führen letztlich zur Definition des Zielzustands für das Niederwassergerinne.

Zielzustand
Der Zielzustand beschreibt die Eigenheiten und das Bild des Gewässersystems und des Niederwassergerinnes, welches unter Berücksichtigung des Handlungsspielraums und der verbleibenden Restriktionen aus der Defizitanalyse erreichbar ist.

Zielzustand in der freien Landschaft

Zielzustand im Siedlungsgebiet
In der freien Landschaft

6-2 Istzustand Stark beeinträchtigtes, mit Längs- und Querwerken verbautes Gewässer, ebene Sohle, ganze Gewässersohle benetzt. Reppisch bei Landikon, ZH.

6-3 Referenzzustand Frei mäandrierender, unbeeinflusster Wasserlauf mit Prall- und Gleitufern, variierender Bestockung, ausgedehnten Hochstaudensäumen. Reppisch bei Husmatten. Stallikon, ZH.

Im Siedlungsgebiet

6-9 Referenzzustand Naturnaher Bachlauf mit dichter Uferbestockung als raumgliederndem Element zwischen den Bebauungen. Kiessohle mit Breiten- und Tiefenvariabilität, Fischunterstände unter den Baumbüscheln. Sure in Sursee, LU.

Massnahmen

Die zu erfüllenden Funktionen und die Charakteristik des Gewässers und des Niederwassergerinnes stehen weitgehend in Abhängigkeit zueinander. Dies ist bei der Wahl der Projektierungselemente, bei der Materialisierung von baulichen Elementen und beim Bau zu beachten. So muss die Ausgestaltung des Gewässerquerschnitts die Anforderungen an die aquatischen, amphibischen und terrestrischen Lebensräume, an die Längs- und Quervernetzung, an die sozioökonomischen Kriterien sowie an die hydraulischen Anforderungen miteinbeziehen.

Die Charakteristik des Gewässers beeinflusst die Projektierungselemente und die Bauweise des Gewässers. Mäanderlängen und Amplitude, Gerinnebreite, Sohlenbreite, Sohlnensubstrat und Gefällsverhältnisse sind wichtige Parameter, aus denen sich typische Querprofile, Längs- und Querwerke, Lenkungs- und Belebungselemente bis zu Bepflanzung und Begrünung ableiten lassen. Örtlichkeit und Geologie geben dabei interessante Hinweise auf die einzusetzenden Materialien (beispielsweise die Art des Steinmaterials, ingenieurbiologische Bauweisen etc.).

Durchfließt das auszubauende oder zu revitalisierende Gewässer einen Landschaftsraum oder ein Siedlungsgebiet, stellt sich aus gestalterischer Sicht auch die Frage, wie der Wasserlauf ein attraktiver Bestandteil des örtlichen Erscheinungsbildes wird. Integriert er sich oder kontrastiert er? Wo und in welcher Ausformulierung werden Erholungsanlagen angelegt unter Berücksichtigung der angestrebten Charakteristik und der zu erfüllenden Funktionen? Diese Parameter haben allerdings keinen direkten Einfluss auf die Notwendigkeit der baulichen Anlage eines Niederwassergerinnes und dessen Ausgestaltung. Sie können jedoch die Wahl der baulichen Elemente beeinflussen und Hinweise auf künftige Pflege- und Unterhaltungsmassnahmen geben (Kapitel 8).

CHECKLISTE SYSTEMANALYSE

ISTZUSTAND

Örtlichkeit und Erscheinungsbild: Wo befinden wir uns?

- Befindet sich das Gewässer in der freien Landschaft oder durchfließt es Siedlungsgebiet?
- Handelt es sich bei der Landschaft um eine Natur- oder eine Kulturlandschaft? Durchfließt das Gewässer Wald, Kulturland, Moorgebiet, ungenutztes Land?
- Durchfließt das Gewässer einen historischen Ortskern, dicht oder locker bebautes Siedlungsgebiet? Ist das Siedlungsgebiet städtisch oder dörflich geprägt?
- Ist das Gewässer bestockt oder dominiert ein Hochstaudenbewuchs?
- Beeinflusst ein hochwassersicherer Ausbau oder eine Revitalisierung das örtliche Erscheinungsbild des Gewässers?

Charakteristik: Wie ist das Gewässer zu charakterisieren?

- Wie ist die aktuelle Morphologie des Gewässers?
- Sind die Ufer verbaut oder natürlich?
- Was für ein Längsgefälle weist das Gewässer auf? Ist die Sohle stabilisiert?
- Kann sich das Gewasser dynamisch entwickeln oder wurde das Gewässer korrigiert?
- Wie ist die Strukturvielfalt im aquatischen, amphibischen und terrestrischen Raum zu beschreiben? Ist sie aktuell typisch oder ist sie eingeschränkt?
- Wie viel Raum kann das Gewässer beanspruchen?
- Wie ist die Charakteristik des Einzugsgebiets?
- Ist die Wasserführung eingeschränkt? Ist sie stark schwankend, trocknet das Gewässer bei trockener Witterung aus? Wie sind die massgeblichen Abflüsse bei Nieder- und Hochwasser definiert?
- Ist die Geschiebeführung intakt? Wie gross sind die Fraktionen, die transportiert werden?
- Welche Charakteristik weist das Niederwassergerinne auf? Gibt es einen Niederwasserabflussbereich? Ist das Niederwassergerinne selbstbildend und selbsterhaltend?
Funktionen: Was für Funktionen (ökologisch, sozioökonomisch, Hochwasserschutz) erfüllt das Gewässer?

- Welchen Tier- und Pflanzenarten beziehungsweise Artengruppen bietet das Gewässer Lebensraum? Sind diese Lebensgemeinschaften selten oder verbreitet? Sind sie für das Gewässer typisch?
- Bietet das Gewässer Fischen Lebensraum? Welches sind die Leitarten?
- Für welche Tierarten ist die Längsvernetzung (aquatisch, amphibisch, terrestrisch) gewährleistet? Sind Arten der Roten Liste vertreten?
- Ist eine Quervernetzung gegeben? Für welche Tierarten ist sie gegeben?
- Wird das Gewässer durch Erholungssuchende genutzt? Verlaufen Wegverbindungen (Fahrradweg, Radweg, Reitweg) entlang des Gewässers? Bestehen Erholungseinrichtungen und Zugangsmöglichkeiten für Menschen zum Wasser?
- Besteht ein Hochwasserschutzdefizit? Wie viel Wasser muss durch das Gerinne abfliessen?
- Bestehen Restriktionen wie Bauten, Anlagen, Infrastrukturen im Gerinnequerschnitt des Gewässers?

REFERENZZUSTAND

- Gibt es Unterlagen, welche einen natürlichen Zustand an diesem Ort dokumentieren?
- Wurden grossräumige, irreversible Landschaftsveränderungen durch den Menschen verursacht (z.B. Gewässerverlegungen), sodass der ursprüngliche, natürliche Zustand nicht mehr erreichbar ist?
- Liegt oberhalb oder unterhalb des Projektgebiets ein Abschnitt, der noch natürlich ist?
- Wie zeigt sich ein Referenzgewässer anderswo und mit vergleichbarer Funktion und Charakteristik?
- Welche Charakteristik weist das Niederwassergerinne im Referenzgewässer auf?

DEFIZITANALYSE

- Entspricht der Istzustand dem Referenzzustand hinsichtlich Ortllichkeit, Erscheinungsbild, Charakteristik und Funktionen?
- Wie weit lassen sich die ermittelten Defizite beheben?
- Welche Restriktionen sind gegeben, die sich nicht verändern lassen?
- Wie ist das Entwicklungspotenzial zu charakterisieren?
- Ist der Referenzzustand erreichbar aufgrund der aktuellen Ortlichkeiten, der Charakteristik, der zu erfüllenden Funktionen und der festgestellten Restriktionen?
- Welche Defizite bestehen spezifisch im Bereich Niederwassergerinne?

ZIELZUSTAND

- Wie lässt sich der Zielzustand des Gewässers als System, respektive wie lässt sich der Zielzustand des Niederwassergerinnes in Abhängigkeit zu den Resultaten aus der Defizitanalyse definieren?
- Wie ist das Erscheinungsbild unter den aktuellen und sich verändernden Ortlichkeiten zu definieren und zu entwickeln?
- In welche Richtung muss das Gewässer und sein Niederwassergerinne verändert werden, damit die Lebensraumansprüche der Leit- oder Zielarten erfüllt werden können?
- Wie können die Bedürfnisse der verschiedenen Nutzer an das Gewässer erfüllt werden?
- Ab wann führt zu viel Dynamik zu einem Schaden?
- Ab wann führt zu viel Dynamik zu einem Schaden?

Ökologische Anforderungen (Kapitel 3) ergeben sich aus den Leitarten und können definiert werden über

- die Wassertiefe und deren Variabilität bei einem bestimmten Niederwasserabfluss (z.B. Q₃₄₇);
- die Strömungsverhältnisse beziehungsweise die Fliessgeschwindigkeit und deren Variabilität bei einem bestimmten Niederwasserabfluss (z.B. Q₃₄₇);
- die Berücksichtigung konkreter Habitate (z.B. Fischunterstände und -rückzugsgebiete);
- die Zusammensetzung und Beschaffenheit des Substrats.

Bauliche Anforderungen betreffen

- die Dimensionierung, die Stabilität und die Lebensdauer von Einbauten;
- die Wirkung von Einbauten in Raum und Zeit bei gewässertypischen Randbedingungen (Abfluss- und Feststoffdynamik);
- die Materialwahl (biologisch, abiotisch, kombinierte Bauweisen);
- gestalterische Aspekte, insbesondere im Siedlungsgebiet.

Vorstudie

Vor der Massnahmenplanung empfiehlt es sich, ein Konzept des Niederwasserbereichs zu entwerfen. Dieses berücksichtigt folgende allgemeine und ortspezifische Faktoren:

Übergeordnete Planung

Ziele (Kapitel 4)
Auf Basis der ökologischen Randbedingungen und der spezifischen Restriktionen werden objektbezogene Ziele für den Niederwasserbereich formuliert.

Grundsätze (Kapitel 5)
Die Devise lautet «So viele Massnahmen wie nötig, so wenige wie möglich».

Systemanalyse (Kapitel 6)
Die Systemanalyse umfasst die Situationsanalyse, die Herleitung eines Referenzzustandes, die Defizitanalyse und die Formulierung eines Zielzustandes. Sie basiert auf den gewässerspezifischen und räumlichen Gegebenheiten (natürliche Morphologie, vorhandener Raum, Zielarten etc.).

Konzept
Als Grundlage für die Projektierung können konzeptionelle Vorgaben (Leitlinien) ausgearbeitet werden, die sich auf die definierten Ziele beziehen. Diese betreffen
• die optimale Linienführung des Niederwasserbereichs;
• die anzustrebende Breiten- und Tiefenvariabilität;
• zusätzliche Strukturierungsmassnahmen an Ufern und Sohlen;
• die Gewässerdynamik im Niederwasserbereich.

Linienführung

Breitenvariabilität

Dynamik
Die morphologische Dynamik gewährleistet die wiederkehrende Erneuerung des Lebensraums, insbesondere des Substrats, aber auch der Pionierstandorte. Damit im Niederwasserbereich eine morphologische Dynamik stattfinden kann, müssen drei Voraussetzungen erfüllt sein:
• Abflussdynamik: Es braucht Hochwasser, die zur Umgestaltung (Erosion) von Ufer- und Sohlenbereichen führen.
• Es braucht eine gewisse Feststoffzufuhr, die dominant das Geschiebe (Kies, Steine), aber auch Totholz und Schwebstoffe betrifft. Dadurch wird erodiertes Material ersetzt, und es bilden sich lockere Ablagerungen.
• Es braucht unbefestigte und ausreichend exponierte Sohlen- und Uferbereiche.
Projekt

Bei der Projektierung sind die konzeptionellen Vorgaben in konkrete Massnahmen umzusetzen. Diese sind bezüglich Wirkung und Stabilität so zu planen, dass die definierten Ziele erfüllt werden können. Für die geplanten Massnahmen sind die hydraulischen Nachweise zu erbringen (zum Beispiel Abfluss- und Fließgeschwindigkeit bei Niederwasserabfluss).

Bei der Projektierung sind vor allem die Linienführung, die Breitenvariabilität und die Dynamik zu berücksichtigen (vergleiche Kasten links und Kapitel 5). Von entscheidender Bedeutung sind zudem die Grösse des Gewässers, die Geschiebeführung sowie gestalterische Aspekte respektive die Integration in den Gesamtkontext des Raums.

In Tabelle 7-2 sind verschiedene punktuelle, linienförmige und flächige Bauelemente aufgeführt. Die Bilder 7-3 und 7-4 zeigen einen Planenausschnitt mit Massnahmen sowie ein Luftbild nach der Bauausführung, die Bilder 7-5 bis 7-17 realisierte Bauelemente. Deren Eignung zur Optimierung des Niederwasserabflussbereichs ist im Einzelfall zu klären und mit erforderlichen Massnahmen zur Ufer- und Sohlensicherung beziehungsweise zum Hochwasserschutz zu kombinieren.

<table>
<thead>
<tr>
<th>Form</th>
<th>Bauelement</th>
<th>Eignung für</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punkt</td>
<td>Buhne (Blockbuhne, Weiden- oder Stummelbuhnen, Dreiecksbuhne, weitere)</td>
<td>BV, LF</td>
</tr>
<tr>
<td></td>
<td>Raubaum</td>
<td>BV</td>
</tr>
<tr>
<td></td>
<td>Wurzelstock</td>
<td>BV</td>
</tr>
<tr>
<td></td>
<td>Residualblock</td>
<td>BV, SoSt</td>
</tr>
<tr>
<td></td>
<td>Blockgruppen</td>
<td>BV</td>
</tr>
<tr>
<td></td>
<td>Belebungsblock, Störstein</td>
<td>BV, SoSt</td>
</tr>
<tr>
<td></td>
<td>Halbschwelle (z.B. sichelförmig, inklinant, abtauchend)</td>
<td>BV</td>
</tr>
<tr>
<td></td>
<td>Schwelle mit Niederwasserbereich</td>
<td>BV, LF</td>
</tr>
<tr>
<td></td>
<td>Bestockung</td>
<td>BV</td>
</tr>
<tr>
<td></td>
<td>Hochstaudensoden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hochstaudensoden</td>
<td></td>
</tr>
<tr>
<td>Linie</td>
<td>Blockverbau (rau, mit vorspringenden Blöcken und Unterständen im Niederwasserbereich)</td>
<td>LF, USt</td>
</tr>
<tr>
<td></td>
<td>Faschine</td>
<td>LF, USt</td>
</tr>
<tr>
<td></td>
<td>Rampen mit Niederwasserbereich</td>
<td>SoSi</td>
</tr>
<tr>
<td></td>
<td>Hochstaudensoden</td>
<td>BV</td>
</tr>
<tr>
<td>Fläche</td>
<td>Bankschützung</td>
<td>LF, BV</td>
</tr>
<tr>
<td></td>
<td>Modellierung von Furt-Kolk-Sequenzen</td>
<td>LF, BV</td>
</tr>
<tr>
<td></td>
<td>Hochstaudensoden</td>
<td>LF, BV</td>
</tr>
</tbody>
</table>

7-5 Blockbuhnen befestigen das Ufer und führen zu Tiefstellen. Wyna Gontenschwil, AG.

7-6 Baumbuhnen führen zu Strömungskonzentration, Tiefstellen und Ruhigwasserzonen. Reppisch Schliffer, ZH.

7-7 Fischunterstand am Buhnenkopf. Reppisch Birmensdorf, ZH.

7-8 Stummelbuhnen, Belebungsblock und Wurzelstöcke. Wyna Gontenschwil, AG.
7-9 Eingewachsener Wurzelstock mit Fischunterstand. Wyna Gränichen, AG.

7-10 Aufgelöste Blockrampe mit hoher Rauigkeit führt zu grosser Abflusstiefe. Wyna Gränichen, AG.

7-11 Hochstauden oder Grassoden können an frisch revitalisierten Gewässern als Erosionsschutz oder als Initialpflanzung verwendet werden. Furtbach Otelfingen, ZH.

7-12 Halbschwelle führt zu Strömungsvielfalt, strukturierter Sohle mit Tiefstelle und Unterständen. Reppisch Birmensdorf, ZH.

↑ 7-14 Residualblock verhindert Geschiebeablagerungen und führt zu Ruhigwasserzone. Necker Achsäge, SG.

→ 7-15 Rauer Blockzusatz mit vorspringenden Blöcken im Sohlenbereich führt zu Strömungskonzentration, Hinterwassern und Unterständen. Blick flussaufwärts. Surb Lengnau, AG.

↓ 7-16 Faschine auf Blöcken führt zu Strömungskonzentration und Fischunterständen. Schlossbach Kriens, LU.

↘ 7-17 Konventionelle Blockrampe mit leichtem Talweg und Störblöcken. Wyna Gränichen, AG.

Ausführung

Vor dem Bau muss geklärt werden, ob wichtige (Klein-)Biotope durch den Bau zerstört werden. Bei Bedarf sind Massnahmen zu deren Schutz oder Ersatz vorzunehmen. In jedem Fall sind aber die betroffenen Bauabschnitte sorgfältig abzusuchen.

Bei der Realisierung ist zu gewährleisten, dass die Massnahmen nach Plan und nachhaltig ausgeführt werden. Dabei bedeutet nachhaltig, dass ihre Wirkung für die vorgesehene Dauer aufrecht erhalten bleibt und deren Funktion nicht anderweitig, zum Beispiel durch Einkiesen, beeinträchtigt wird. Dabei ist insbesondere folgenden baulichen Aspekten Rechnung zu tragen:

- Ausreichendes Einbinden in das Ufer zum Vermeiden von Hinterspülungen (zum Beispiel bei Buhnen)
- Ausreichende Fundationstiefe von festen Bauwerken oder flexible Bauweise
- Berücksichtigung von Filterschichten zum Verhindern von Auswaschungen
- Ausreichende Einbauhöhe, sodass Ziele erreicht werden (zum Beispiel Umlenkwirkung von Buhnen, Fischunterstände)
- Einbaurichtung bei Buhnen und Halbschwellen zur optimalen Strömungslenkung
- Zusammensetzung von körnigem Material (Blockgrössen, Grobschotter, Kiesschüttungen)
- Materialwahl insbesondere bei ingenieurbiologischen Bauweisen (Totholz, Ausschlagfähigkeit und Dauerhaftigkeit)

Es empfiehlt sich, im Rahmen der Ausführung Musterstrecken zu erstellen, sodass durch Experten Korrekturen angebracht werden können.

Wichtig ist der laufende Einbezug der Unterhaltszuständigen. Werden ihnen die Projektideen nicht vermittelt, sind viele gute gemeinte Überlegungen und Einbauten umsonst.

Erfolgskontrolle

Im Rahmen der Erfolgskontrolle sind die ausgeführten Massnahmen auf ihre Wirkung und Nachhaltigkeit zu überprüfen. Die Erfolgskontrolle sollte auch den Zustand nach bedeutenden Hochwasserereignissen erfassen. Bei Bedarf sind bauliche Nachbesserungen vorzunehmen (Kapitel 9).

Mit der Erfolgskontrolle soll auch die ökologische Entwicklung der Gewässerabschnitte verfolgt und mit einer Referenzstrecke verglichen werden. Insbesondere ist dabei der Fischbestand nach Arten und Populationsstruktur zu überprüfen.
7-18 Ziele, Leitlinien und mögliche Bauelemente für Gewässer mit unterschiedlichen Defiziten.

<table>
<thead>
<tr>
<th>Zustand</th>
<th>Defizite</th>
<th>Ziele</th>
<th>Konzept, Leitlinien</th>
<th>Massnahmen / Bauelemente</th>
</tr>
</thead>
<tbody>
<tr>
<td>natürlich (mäandrierend, verzweigt, gewunden bis gestreckt)</td>
<td>Keine</td>
<td>Erhalten</td>
<td>Eigendynamische Entwicklung</td>
<td>Keine</td>
</tr>
<tr>
<td>Tiefstellen ungenügend</td>
<td>Tiefstellen fördern oder anlegen</td>
<td>Lokale strömungslenkende Massnahmen im Ufer- und Sohlenbereich (Breitenvariabilität)</td>
<td>Buhnen, Blockgruppen, Belebungsblöcke (Störblöcke), Raubäume, sichelförmi ge Halbschwellen etc.</td>
<td>Modellierung von Furt-Kolk-Sequenzen</td>
</tr>
<tr>
<td>Fehlende Flach- und Stillwasserzonen</td>
<td>Flachwasserzonen fördern oder anlegen</td>
<td>Gestaltungsmassnahmen im Ufer- und Sohlenbereich. Breitenvariabilität fördern</td>
<td>Ufer abflachen, Buchten und Hinterwasser anlegen</td>
<td>Furt-Kolk-Sequenzen anlegen</td>
</tr>
<tr>
<td>Unterstände und Rückzugsgebiete ungenügend</td>
<td>Unterstände und Rückzugsgebiete fördern oder anlegen</td>
<td>Lokale strömungslenkende Massnahmen im Uferbereich. Auch in Kombination mit Ufersicherung</td>
<td>Buchten und Hinterwasser anlegen</td>
<td>Einbringen von Totholz (Raubäume, Wurzelstöcke)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geeigneten Bewuchs fördern (z.B. Eschen), Pflanzsoden, Fachinen mit Unt erständen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diverse Buhnenarten, Blockgruppen mit Zwischenräumen</td>
</tr>
<tr>
<td>Beeinträchtigte Geschiebeführung</td>
<td>Bankbildung fördern</td>
<td>Sanierung</td>
<td>Geschiebehaushalt</td>
<td>Bauliche oder betriebliche Massnahmen an Anlagen, Kieszugaben etc.</td>
</tr>
<tr>
<td>Ebene Sohle mit stabiler Deckschicht</td>
<td>Sohle diversifizieren</td>
<td>Strukturierungs-</td>
<td>Niederwassergerinne mit geeigneter Korn-</td>
<td>Niederwassergerinne mit geeigneter Korn- mischung modellieren. Grundsätze Morpholo-</td>
</tr>
<tr>
<td>Monotone Strömung</td>
<td>Tiefstellen und Flachwasserzonen</td>
<td>massnahmen im Sohlen- und Uferbereich. Hinternisse</td>
<td>mischung modellieren. Grundsätze Morphologische Verhältnisse etc. berücksichtigen</td>
<td>giegenen Stellen</td>
</tr>
<tr>
<td></td>
<td>fördern oder anlegen</td>
<td>einbauen, welche zu lokalen Erosionen führen</td>
<td>Aushub von Tiefstellen an morphologisch geeigneten Stellen Buffen, Raubäume, Residualblöcke etc. einbauen</td>
<td></td>
</tr>
<tr>
<td>Geringe Abfluss- tiefe bei Schwellen und Rampen</td>
<td>Abflusskonzentration</td>
<td>Niederwasser-</td>
<td>Krümmung, Wölbung oder Gliederung der Schwellenkronen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bereich anlegen</td>
<td>Bei Rampen Niederwasserbereich anlegen und Belebungsblöcke (Störsteine) einbauen</td>
<td></td>
</tr>
<tr>
<td>künstlich (gestreckt, eingeengt, Ufer durchgehend hart verbaut)</td>
<td>Fehlende Tiefstellen</td>
<td>Vielfältiges Niederwassergerinne anlegen</td>
<td>Bau eines Niederwassergerinne innerhalb der Gewässersohle mit angepassten Methoden und Materialien</td>
<td>Pendelnde Linienführung, diverse Buhnenarten, Raubäume, Blockgruppen, ingenieurbiologische Massnahmen, Pflanzsoden, etc.</td>
</tr>
</tbody>
</table>
8 Pflege und Unterhalt

Zweck von Pflege und Unterhalt in Gewässersystemen

Pflege und Unterhalt in Gewässersystemen verfolgen grundsätzlich und unabhängig vom Niederwassergerinne die folgenden drei Hauptziele:

• Sicherstellung der Hochwassersicherheit
• Förderung der ökologischen Vielfalt und Funktionsfähigkeit (terrestrische, amphibische und aquatische Vernetzung)
• Gewährleistung der Erholungsnutzung

Diese Ziele können durch eine Vielzahl von Massnahmen erreicht werden:

• Mähen von Böschungen und Hochstaudensäumen
• Pflege von Gehölzen
• Entfernen von Problempflanzen (z.B. Neophyten)
• Entfernen von Schwemmholzansammlungen (z.B. Verklausungen von Brücken)
• Sanierung von Verbauungen (z.B. Schwellen, Buhnen)
• Instandsetzen von Erosionsstellen bei unverhältnismässiger Seiten- oder Sohlenerosion
• Entfernung von Auflandungen, Leerung von Geschiebesammlern
• Abfallentsorgung

Unterscheidung zwischen Pflege und Unterhalt

Pflege von Niederwassergerinnen in natürlichen oder naturnahen Fließgewässersystemen

In natürlichen Fließgewässersystemen bildet sich ein Niederwassergerinne aufgrund eigendynamischer Flussprozesse von selbst aus und verändert sich durch Laufverlagerungen ständig (Kapitel 3 und 5). Hier sind keine Pflege- oder Unterhaltsarbeiten am Niederwassergerinne notwendig.

8-1 Ein natürlich gewachsenes Niederwassergerinne benötigt keine Pflege. Bünzaue in Mönken-Wildegg, AG.
Naturnahe Fließgewässersysteme zeigen in ihrer Ausprägung eine natürliche oder naturähnliche Erscheinungsform. Sie können aus einem natürlichen System durch menschliche Eingriffe wie Wuhren, Laufstreckungen oder lokale Einbauten entstanden sein. Oder es handelt sich um revitalisierte Fließgewässer, also um gebaute Gerinne mit natürlichen Strukturen und einer an die natürlichen Verhältnisse angelehnten Morphologie. Sofern das Gewässer nach natürlichen Referenzkriterien angelegt wurde, bildet sich auch hier ein Niederwassergerinne eigendynamisch aus, das keiner Pflege bedarf (Bild 8-2).

8-2 Die Revitalisierung des Hofibachs in Affoltern am Albis, ZH, erfolgte in Anlehnung an natürliche Referenzen. Das mäandrierende Niederwassergerinne bildet und regeneriert sich eigenständig und ohne Pflegebedarf.

8-3 Die muldenförmige Gerinneform des Furtbachs bei Dänikon, ZH, neigt zur Verschlammung. Ein vitaler Hochstaudensaum gewährleistet ein funktionsfähiges Niederwassergerinne.
Unterhalt von Niederwassergerinnen in naturfernen Fliessgewässersystemen

Künstliche Niederwassergerinne in Beton oder Steinsatz sind dann zu unterhalten und instand zu stellen, wenn dies zur Gewährleistung der Hochwasserschutzfunktion unbedingt notwendig ist und ein Systemkollaps verhindert werden muss. Nach Möglichkeit sind solche Systeme durch flexible, dynamische und naturnahe Gerinnesohlen zu ersetzen.

Landwirtschaftliche Entwässerungskanäle jeder Grösse können in künstlicher, gestreckter oder in naturnaher, leicht pendelnder Form auftreten. Infolge ihrer Funktion, nicht nur das Hochwasser, sondern auch das Niederwasser möglichst ohne Rückstau in die landwirtschaftlichen Kulturen (Funktionsfähigkeit der Drainagesysteme) abzuführen, können Massnahmen im Niederwasserbereich notwendig sein. Eingriffe wie das Entfernen von Auflandungen im Niederwassergerinne haben in jedem Fall so schonend wie möglich zu erfolgen.

Bei Pflegeeingriffen sind die ökologischen Folgen zu bedenken. So wird beim Mähen von Wasserpflanzen (Bild 8-4) der Wirbellosenbiozönose das Substrat und die Nahrungsgrundlage entzogen. Die Populationen werden dadurch zerstört. Anschliessend beginnt ein neuer Wiederbesiedlungszyklus mit Pionierarten, der im Folgejahr bei erneutem Schnitt bereits wieder unterbrochen und auf Null gesetzt wird.

Ist die Pflege oder der Unterhalt eines Niederwassergerinnes nötig?

Solange die eigendynamischen Prozesse in einem Fliessgewässer intakt sind, ist ein Unterhalt oder eine Pflege zum Erhalt des Niederwassergerinnes grundsätzlich nicht nötig. Fehlt eine solche Eigendynamik, kann durch einfache Massnahmen zur Strukturierung des Sohlenbereichs die Bildung eines Niederwassergerinnes gefördert werden. Solche Massnahmen können sowohl baulicher als auch pflegerischer Art sein. Sie schaffen die Voraussetzung dafür, dass sich ein Niederwassergerinne über natürliche Prozesse selber bilden, erhalten und weiter entwickeln kann.

8-4 Beispiel einer fragwürdigen Pflegemassnahme mit desaströser Auswirkung auf die Ökologie des Niederwassergerinnes. Mäharbeiten im Furtbach, Dänikon, ZH.
Blick zurück und nach vorne

Erfüllung von Zielen

In der Planung eines Projekts werden gelegentlich kurz- sichtige Ziele (Kapitel 4 und 7) formuliert. Folgendes Beispiel soll dies verdeutlichen:
Ein Gewässer wird unter gegebenen Voraussetzungen in einen definierten Zustand überführt. Mit den gestalterischen Massnahmen können die Ziele erreicht werden. Der Bachlauf sieht auf den ersten Blick so aus, wie man ihn geplant hatte. Nun stellt sich aber die Frage, was längerfristig passieren wird. Ein Projektziel bestand darin, Dynamik am Gewässer zuzulassen. Dieses Ziel kann erreicht werden, solange keine grösseren Eingriffe mehr erfolgen. Was die Dynamik letztlich mit dem Gewässer anstellt, kann zu Beginn nur abgeschätzt werden. Der Prozess ist dabei für die Entwicklung ökologischer Qualität sehr wichtig. Die ökologische Qualität (Kapitel 3), das heisst der Wert des Gewässers als Lebensraum für wasserbezogene Tiere und Pflanzen, lässt sich also keinesfalls nach kurzer Zeit beurteilen. Die mit der Zeit entstehenden Mikrohabitaten und die Veränderungen des Gewässerlaufs werden erst nach Jahren sichtbar. Wenn der natürliche Ursprungszustand die Vorgabe sein soll, braucht es langfristige Ziele, die den Faktor Zeit einbeziehen (Bild 9-1).

Alles auf einmal und sofort

9-1 Wie dieses vorgeformte Niederwassergerinne einmal aussehen wird, kann nur abgeschätzt werden. Die langfristige Entwicklung eines naturnahen Lebensraums benötigt Zeit. Gründelbach Moosleerau, AG.
Mit dem Zuwachsen der Böschung gehen gebaute Strukturen für das Auge verloren, und was neu entstanden ist, kann nur durch genaues Hinschauen oder eine Erfolgskontrolle festgestellt werden. Die nötige Geduld zur Beurteilung von Massnahmen wird nur selten aufgebracht.

Zeitbedürftige Strukturen

↓ 9-2 Das menschliche Auge beurteilt, was es sieht. Die frisch revitalisierte Bünz sieht auf den ersten Blick ansprechend aus. Bünz Boswil, AG.

↓ 9-3 Durchwachsene und unterspülte Ufer sind das Ergebnis jahrzehntelanger Dynamik. Pfaffnern Vordenwald, AG.

Kompensation

Bild 9-4 Dank der vielen, über die Jahre entstandenen Kleinststrukturen verblüfft der Fischreichtum solcher Kleingewässer immer wieder. Erusbach Sarmenstorf, AG.

Bild 9-5 Künstlicher Fischunterstand. Hätten in diesem Abschnitt eine weniger starke «Möblierung» und etwas mehr Geduld nicht ausgereicht?

Bild 9-6 Seitliche Mauern begrenzen die dynamische Entwicklung. Grosse Bäume, welche das Niederwassergerinne strukturieren könnten, sind hier kaum erwünscht. Der Faktor Zeit kann kaum gestaltend wirken und wird irrelevant. Hinterbach Villmergen, AG.
10 Beispiele aus der Praxis

Die vorangehenden Kapitel zeigen auf, ob und unter welchen Voraussetzungen der Bau eines Niederwassergerinnes vorzunehmen ist. Daraus leitet sich ab, was bei Projektierung, Bau und Unterhalt zu beachten ist.

Bilder aus der Praxis

Am Schluss des Kapitels sind die Beispiele auf Seite 108 – 109 auf einem Kartenausschnitt dargestellt.

Beispiele für natürliche Fließgewässer

- Sense, FR/BE, Seiten 60 – 61
- Reppisch, Stallikon ZH, Seiten 62 – 63

Beispiele für revitalisierte Fließgewässer

in der freien Landschaft

- Hofibach, Affoltern am Albis ZH, Seiten 64 – 67
- Lugibach, Wettingen AG, Seiten 68 – 71
- Leugene, Pieterlen BE, Seiten 72 – 75
- Reppisch, Birmensdorf ZH (Waffenplatzareal), Seiten 76 – 79
- Enziwigger, Hergiswil LU, Seiten 80 – 81
- Luthern, Schötz/Nebikon LU, Seiten 82 – 85

Beispiele für Fließgewässer im Siedlungsgebiet mit eingeschränktem Handlungsspielraum

- Staffeleggbach Unterdorf, Ueken AG, Seiten 86 – 89
- Altlauft Enziwigger, Willisau LU, Seiten 90 – 91
- Eibach, Gelterkinden BL, Seiten 92 – 93
- Staffeleggbach Unterueken, Ueken AG, Seiten 94 – 97

Beispiele für künstliche Fließgewässer

im Siedlungsgebiet

- Dänkelbach, Lengnau AG, Seiten 98 – 101
- Durchlass Dorfbach, Küsnacht ZH, Seiten 102 – 103
- Dorfbach, Spreitenbach AG, Seiten 104 – 107
Beispiele für natürliche Fließgewässer

Sense

Diverse Gemeinden FR und BE

Kennwerte

<table>
<thead>
<tr>
<th>Abflüsse:</th>
<th>$Q_{347} = 2,\text{m}^3/\text{s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$HQ_{2.5} = 150−200,\text{m}^3/\text{s}$</td>
</tr>
<tr>
<td></td>
<td>$HQ_{100} = 400,\text{m}^3/\text{s}$</td>
</tr>
<tr>
<td>(alle Abflüsse Thörishaus)</td>
<td></td>
</tr>
</tbody>
</table>

Ø Sohlengefälle: ca. 2 %

Geschiebeführung: hoch und regelmässig

Ausgangslage

Dieses Beispiel beschreibt eines der wenigen noch über weite Strecken natürlichen Fließgewässers der Schweiz: die Sense. Es veranschaulicht, wie sich Niederwassergerinne in grossen, geschiebeführenden Flüssen durch die natürliche Morphologie selber entwickeln und verändern. Die Sense kann als Referenzgewässer für geschiebeführende Gewässer mit verzweigter Gerinneform herangezogen werden.

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise

Das Niederwassergerinne entwickelt sich eigen- dynamisch und weist vielfältige Lebensräume auf. Es sind somit keine Massnahmen erforderlich.

Risiken und Probleme

Aufgrund der natürlichen Morphologie können keine Risiken oder Probleme in Bezug auf das Niederwassergerinne auftreten.

Entwicklung

Im Bereich der natürlichen Abschnitte verändert sich das Flussbett bei Hochwasserereignissen durch Geschiebeumlagerungen und durch die Veränderung der Vegetation ständig. Der Niederwasserbereich ändert somit dynamisch seine Lage und Ausgestaltung und bietet abwechslungsreiche und vielfältige Lebensräume.
10-1 Das Niederwasser im verzweigten Gerinne bei Sodbach weist eine grosse Variabilität der Strömungsverhältnisse auf.

10-2 Furt und Schnelle zwischen Kiesbänken in der Schluchtstrecke. Felswände begrenzen die Gerinnesohle.

10-3 Luftbild mit verzweigtem Gerinne bei Plaffeien, FR.
Beispiele für natürliche Fließgewässer

Reppisch
Stallikon ZH

Kennwerte
Abflüsse: \(Q_{347} = \text{ca. 80 l/s} \)
HQ_{2.5} = 5 – 8 m³/s
HQ_{100} = 28 – 36 m³/s
Ø Sohlengefälle: 1.1 – 1.4 %
Geschiebeführung: gering – mittel

Ausgangslage
Die Reppisch ist mit ihren 20 km Länge vom Türlersee bis zur Limmat eines der ökologisch wertvollsten Fließgewässer im Kanton Zürich. Im Bereich der Gemeinde Stallikon fliesst die Reppisch noch weitgehend in ihrem ursprünglichen Bachbett. Sie konnte so ihren mäandrierenden, natürlich pendelnden Verlauf beibehalten. Die natürliche Reppisch kann als Referenzgewässer für mäandrierende Fließgewässer herangezogen werden.

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise
Um den natürlichen Verlauf der Reppisch zu sichern, wurde ein 10 km langer und bis zu 60 m breiter Geländestreifen zu einer einzigen Reppischparzelle vereinigt. Damit konnte die Idee eines Ökokorridors verwirklicht und somit auch langfristig die Dynamik und Natürlichkeit der Reppisch sichergestellt werden.

Bauliche Massnahmen am Niederwassergerinne sind angesichts der natürlichen Dynamik und des Strukturreichtums nicht nötig.

Risiken und Probleme
Aufgrund der natürlichen Morphologie können keine Risiken oder Probleme in Bezug auf das Niederwassergerinne auftreten.

Entwicklung
Das Niederwassergerinne entwickelt sich durch natürliche Umlagerungsprozesse und Lauflagerungen eigenständig weiter. Ein Unterhalt des Niederwassergerinnes ist nicht notwendig.
10-4 Das Gerinne weist eine grosse Struktur- und Stromungsvielfalt auf. Geringe Abflusstiefen mit hohen Fließgeschwindigkeiten und tiefe Becken sowie Gleit- und Prallhänge wechseln sich ab.

10-6 Oberes Einzugsgebiet der Reppisch in Richtung Süden.

Kennwerte

Abflüsse:
\[Q_{10} = \text{ca. } 15 \text{ l/s} \]
\[HQ_{2.5} = 4 – 7 \text{ m}^3/\text{s} \]
\[HQ_{100} = 28 \text{ m}^3/\text{s} \]
Geschebengefälle: 0.9 – 1.3 %
Geschebewahrung: gering – mittel
Bau: 2012

Ausgangslage

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise

Risiken und Probleme

Da die dynamischen Prozesse aufgrund der mäandrierenden Gewässeranlage sehr ausgeprägt wirken konnten, fanden auch Umlagerungsprozesse im Bereich der Niederwassergerinne statt. Sie bildete sich neu und verlagerte sich, Korrekturen waren deshalb keine notwendig.

Probleme ergaben sich aufgrund der teilweise massiven seitlichen Erosion. Allerdings nicht für das Niederwassergerinne, sondern für die angrenzende Landwirtschaft. Mit ingenieurbiologischen Massnahmen konnte der Erosionstrend entgengewirkt werden.

Entwicklung

Die gewählte Profilform und Gewässeranlage hat sich in Bezug auf das Niederwassergerinne vollumfänglich bewährt. Das Niederwassergerinne kann sich dynamisch weiterentwickeln. Ein Unterhalt oder bauliche Massnahmen sind nicht notwendig.

Beispiele für revitalisierte Fliessgewässer in der freien Landschaft

Lugibach
Wettingen AG

Kennwerte
Abflüsse: \(Q_{347} = 10 \, \text{l/s} \)
HQ 2-5 = ca. 2 m³/s
HQ 100 = ca. 4.4 m³/s
Ø Sohlengefälle: 1.4 %
Geschiebeführung: sehr gering, wenig organisches Material
Bau: 2007

Ausgangslage

Charakteristik des Gewässers und Morphologie
Der neue Gewässerlauf wurde entlang des Kiesabbaugebiets gebaut. Der Boden weist einen hohen Anteil an Schotter und Kies auf. Unterhalb des etwas steileren Oberlaufs durchfliesst der Lugibach eine Ebene, bevor er eine kurze und steile Schlucht durchfliesst und in die Limmat mündet. Der Lugibach war im Abschnitt auf der Ebene einst ein typischer Wiesenbach.

Es gibt einige Flurnamen, in denen das Wort «Lugi» oder «Lug» enthalten ist. Es handelt sich um Orte, die nicht das sind, was sie vorgeben zu sein. Der Lugibach ist also ein Gewässer, welches lügt, indem es Wasser verspricht, aber nur sehr unregelmässig oder nur zu bestimmten Jahreszeiten auch wirklich Wasser führt.

Massnahmen und Bauweise

Risiken und Probleme

Entwicklung
10-14 Der Lugibach war vor der Verlegung im Frühjahr 2007 mit seinem beinahe zugewachsenen Gerinne ein typischer Wiesenbach mit Hochstaudensaum. Der Uferstreifen war sichtlich schmal.

10-17 Dezember 2012. Der Bach bei leicht erhöhtem Wasserstand.
Die Krautschicht vermag die sehr flache Böschung gut zusammenzuhalten und sorgt in den Sommermonaten für Beschattung. Das Gewässer selbst verschwindet unter den Pflanzen.

Beispiele für revitalisierte Fließgewässer in der freien Landschaft

Leugene
Pieterlen BE

Kennwerte
Abflüsse: \(Q_{67} = 60 \, \text{l/s} \)
HQ = 8 m³/s
HQ = 12 m³/s
Ø Sohlengefälle: ca. 1‰
Geschiebeführung: keine

Ausgangslage

Charakteristik des Gewässers und Morphologie
Die Leugene führt aufgrund der Herkunft des Wassers kein Geschiebe und weist ein geringes Gefälle auf (teilweise unter 1‰). Das Gerinne ist grosszügig dimensioniert mit einem Niederwassergerinne, das sich durch das V-Profil schlängelt. Die Sohle ist streckenweise kiesig, auf einzelnen Abschnitten verschlammt. In unregelmässigen Abständen sind flache Teiche eingelegt, die nur bei Hochwasser überflutet werden. Dank des nährstoffreichen Wassers entwickelt sich ein üppiger Pflanzenwuchs. Dynamische Veränderungen der Morphologie sind nicht zu erwarten und wurden bisher auch nicht festgestellt.

Massnahmen und Bauweise
Das Hochwasserprofil weist einen Durchflussquerschnitt von 40 bis 50 m² auf, was einer Abflusskapazität von 8 m³/s im obersten und einer Kapazität von 12 m³/s im untersten Abschnitt entspricht. Die bis zu 4 m hohen Böschungen sind am Fuss teilweise mit Blöcken gesichert. Das Niederwassergerinne ist mit Kiesbänken, Blöcken und stellenweise mit Flechtzäunen befestigt und kann sich innerhalb des Profils nicht stark verlagern. Die flachen Teiche sind mit Flechtzäunen vom Gerinne abgetrennt und teilweise mit Folien ausgelegt. Die Uferböschungen wurden abwechslungsreich gestaltet mit Steinbiotopen für Reptilien, Steinwänden für den Eisvogel, südexponierten Magerwiesen und Sträuchern.

Risiken und Probleme

Entwicklung

Beispiele für revitalisierte Fliessgewässer in der freien Landschaft

Reppisch
Birmensdorf ZH (Waffenplatzareal)

Kennwerte
Abflüsse: \(Q_{347} = 0.2 \, \text{m}^3/\text{s} \)
HQ\(2\cdot5\) = 20 – 25 \(\text{m}^3/\text{s} \)
HQ\(100\) = 80 \(\text{m}^3/\text{s} \)
Ø Sohlengefälle: 0.5 %
Geschiebeführung: gering
Bau: 2007

Ausgangslage

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise
Das Revitalisierungskonzept bestand darin, innerhalb des zur Verfügung stehenden Raums einen pendelnden Lauf mit einzelnen Nebengerinnen anzulegen. Der dynamische Bereich war seitlich mit lokalen Verbauungen zu begrenzen. Dazu wurden im Wesentlichen folgende Massnahmen umgesetzt:

- Anlegen eines pendelnden Gerinnes mit zwei Nebengerinnen durch Aushub und Schütten von ausreichend groben Bänken. Die Sohle wurde abschnittweise mit Grobschotter angereichert, um Sohlenerosionen zu verhindern
- Punktuelle Ufersicherung durch Block- und Baum­buhnen entlang der Prallhänge. Anlegen eines Verengungsrichters am unteren Ende des Perimeters (vor Buehaldenbrücke)
- Lokale Strukturierungen mit Findlingen (Sohle), einer Halbschwelle und Wurzelstöcken (Ufer)

Risiken und Probleme

Entwicklung
Seit der Realisierung im Jahr 2007 konnte folgende Entwicklung beobachtet werden:

- Kolkbildung an Buhnenköpfen und Entwicklung von Buchten im Oberwasser einzelner Buhnen.
- Lokal starke Mäanderentwicklung mit reduzierter Wellenlänge und zunehmender Amplitude führt zu Ufererosion.
- Einwachsen der Bänke führt zu Abflusskonzentration und ausgeprägten Furt-Kolk-Sequenzen.
- Verlandung und Trockenfallen eines Nebengerinnes bei Niederwasserabfluss.
- Der Niederwasserbereich zeigt eine grosse Breiten- und Tiefenvariabilität mit entsprechender Strömungs­vielfalt. Der Unterhalt beschränkt sich auf die Uferbereiche.

10-34 Januar 2013. Prallufer mit Tiefstelle.
Beispiele für revitalisierte Fliessgewässer in der freien Landschaft

Enziwigger
Hergiswil LU

Kennwerte
Abflüsse:
\(Q_{347} = \text{ca. } 0.35 \text{ m}^3/\text{s} \)
\(HQ_{2-5} = 10 – 15 \text{ m}^3/\text{s} \)
\(HQ_{100} = \text{ca. } 30 \text{ m}^3/\text{s} \)
Ø Sohlengefälle: ca. 3.5 %
Geschiebeführung: hoch und regelmässig
Bau: 2011

Ausgangslage

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise

Risiken und Probleme
Die Längsvernetzung konnte mit der Strukturierung der Sohle und dem Niederwassergerinne mit variablen Wassertiefen und zentriertem Abfluss deutlich verbessert werden. Durch die verbleibenden, relativ hohen Schwellen ist die Durchgängigkeit insbesondere für kleinere Fische und Kleinlebewesen weiterhin nicht überall gegeben.

Entwicklung

← 10-38 April 2013. Im Bereich der Schnellen hat sich durch kleinere Hochwasser bereits Geschiebe abgelagert. Der Abfluss verzweigt sich bei Niederwasser und führt zu variablen Fließverhältnissen.
Beispiele für revitalisierte Fließgewässer in der freien Landschaft

Luthern
Schötz/Nebikon LU

Kennwerte
Abflüsse: \(Q_{347} = \text{ca. } 0.4 \text{ m}^3/\text{s} \)
HQ_{2.5} = 30–40 m³/s
HQ_{100} = 75–80 m³/s
(Nebikon)
Ø Sohlengefälle: 0.8 %
Geschiebeführung: mittel – hoch

Ausgangslage

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise
Der vom Gewässer benötigte Raum konnte nicht zur Verfügung gestellt werden, sodass eine Rückführung in ein natürlicheres Gewässer bzw. in den Referenzzustand nicht möglich war. Die Luthern weist heute weiterhin einen gestreckten Lauf auf. Der Zielzustand ist somit ein generell aufgeweiteteres Gerinne, das eine variable Sohlenbreite und eine strukturierte Sohle aufweist, womit eine bessere Führung des Wasserlaufes bei Niederschlag angestrebt wird.

Risiken und Probleme
Seit dem Ausbau der Luthern hat sich die Sohle eingetieft. 2011 eingebaute, überdeckte Blockschwellen liegen teilweise frei und verhindern eine weitere Sohlenabtie- fung. Bei einigen Strukturen wies das eingebrachte Kiesmaterial eine zu feine Korngrößenverteilung auf und wurde ausgewaschen. Dies führt nun zwar zu Ruigigwasserzonen hinter den Blöcken, aber die Blöcke reichen nicht aus, um eine strömungsleitende Wirkung zu entfalten.

Entwicklung
Im Abschnitt Schötz im Bereich Gläng hat sich die Luthern durch Geschiebeumlagerungen seit der Fertigstellung der Bauarbeiten eingetieft und die einge-bauten Blockschwellen wirken nun als Sohlensicherung. Hinter Hindernissen haben sich aber auch kleine Kies-bänke und Flachwasserzonen gebildet. Einzelne Kiesbänke haben sich durch Bewuchs gefestigt. Ein grösseres Hochwasser ist aber seit dem Bau der Massnahmen noch nicht aufgetreten.

10-42 Vor dem Ausbau.

10-45 Oktober 2013, Schötz. Die beim Bau geschüttete Kiesbank zur Einengung des Niederwasserabflusses wurde ausgespült und hat nur noch eine beschränkte Wirkung. Das eingebrachte Kiesmaterial wies zu kleine Korngrössen auf. Innerhalb der Struktur bilden sich Ruhigwasserzonen.
Beispiele für Fliessgewässer im Siedlungsgebiet mit eingeschränktem Handlungsspielraum

Staffelegggbach
Unterdorf, Ueken AG

Kennwerte
Abflüsse: \(Q_{347} = \text{ca. } 26 \text{ l/s} \)
\(HQ_{2.5} = \text{ca. } 9 \text{ m}^3/\text{s} \)
\(HQ_{100} = \text{ca. } 26 \text{ m}^3/\text{s} \)
\(\varnothing \text{ Sohlegefälle: } 1.6 \% \)
Geschiebeführung: mittel
Bau: 2001

Ausgangslage

Private Wohn- und Nutzgärten und Bauten unterschiedlichster Nutzung begrenzten den zur Verfügung stehenden Raum für den Wasserlauf. Im Unterdorf waren die Platzverhältnisse so eingeengt, dass der Hochwasserabfluss nur mit einem von Mauern begrenzten Profil zu gewährleisten war.

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise

Risiken und Probleme

Entwicklung
Das Niederwassergerinne pendelt im gleichen Rhythmus mit der durch die Mauern vorgegebenen Grossform. Auf den Innenkurven haben sich dichte und stark verwurzelte Hochstaudensäume entwickelt. Der Bewuchs wird periodisch gemäht.

Beispiele für Fliessgewässer im Siedlungsgebiet mit eingeschränktem Handlungsspielraum

Altlauf Enziwigger
Willisau LU

Kennwerte
Abflüsse:
\[Q_{97} = \text{ca. } 0.7 \text{ m}^3/\text{s} \]
\[HQ_{2.5} = \text{ca. } 5 \text{ m}^3/\text{s} \]
\[HQ_{100} = 15 \text{ m}^3/\text{s} \]
Ø Sohlengefälle: 1.1 %
Geschiebeführung: sehr gering
Bau: etappenweise zwischen 2007 und 2013

Massnahmen und Bauweise
Mit dem Einbau von Blöcken, der Umlagerung des bestehenden Sohlenmaterials und ingenieurbio-
logischen Massnahmen wie Faschinen wurde die Sohle strukturiert. Dadurch konnte im oberen Abschnitt des Altlaufes die Situation bei Niederwasser verbessert werden, aber die Variabilität der Fliesstiefe blieb weiterhin einge-
schränkt. Im kürzlich sanierten unteren Abschnitt weist das Niederwassergerinne zurzeit eine grössere Variabilität der Fliesverhältnisse auf als im oberen Abschnitt.

Risiken und Probleme
Bei Hochwasser der Enziwigger in Willisau gibt es zurzeit noch Probleme beim Dotieren des Entlastungs-
kanals. Es wurde teilweise Geschiebe in den Altlauf eingetragen, was zu Kiesablagerungen führte. Die ein-
gebauten Strukturen wie Fischunterstände aus Faschinen wurden auf dem obersten Abschnitt des Alt-
laufs eingekies. Die Strukturen wurden anschliessend teilweise wieder freigelegt.

Entwicklung
Der entstandene Bewuchs hat das Niederwassergerinne gefestigt. Die derzeitige Situation wird sich wegen der fehlenden Dynamik des Gewässers nicht weiter ver-
ändern. Mit Gehölzpflage ist dafür zu sorgen, dass die Bestockung die Abflusskapazität nicht beeinträchtigt.

Die Entwicklung des Niederwassergerinnes im neu sanierten, unteren Abschnitt kann noch nicht beurteilt werden, da bislang kein grösserer Abfluss aufgetreten ist.

Ausgangslage

Die im Laufe der Jahre stark beanspruchten Ufermauern des Altlaufes wurden in verschiedenen Etappen saniert. Im Rahmen dieser Sanierungen wurden zusätzlich Massnahmen zur Aufwertung der Sohlenstruktur innerhalb der bestehenden Ufermauern umgesetzt.

Charakteristik des Gewässers und Morphologie
Bei Hochwasser nimmt der Entlastungsstollen den grössten Teil des Wassers auf, sodass der Abfluss im Alt-
lauf der Enziwigger stark gedämpft wird. Die Schwankun-
gen im Abflussregime sind auf diesem Abschnitt gering. Durch den Altlauf wird also praktisch kein Ge-
schiebe abgeführt. Eine Dynamik oder Strukturierung der Sohle durch Geschiebeumlagerung ist nicht zu er-
warten. Als Zielzustand wurde eine möglichst vielfältige Sohle innerhalb der bestehenden Ufermauern ange-
strebt, die ein variables Niederwassergerinne aufweist.

Beispiele für Fließgewässer im Siedlungsgebiet mit eingeschränktem Handlungsspielraum

Eibach
Gelterkinden BL

Kennwerte
Abflüsse: \(Q_{47} = 70 \text{l/s} \)
HQ \(_{2.5} = 14 \text{m}^3/\text{s} \)
HQ \(_{100} = 35 \text{m}^3/\text{s} \)
Ø Sohlengefälle: 1 %
Geschiebeführung: gering
Bau: 2011

Ausgangslage

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise

Risiken und Probleme

Wegen der beengten Platzverhältnisse musste während der Bauarbeiten die gesamte Gewässersohle aufgebrochen werden (Aushub für die Fundation der Schutzmauern und die Wasserhaltung). Dadurch wurden die Stabilität und die natürliche Kolmatierung der bestehenden Gewässersohle gestört und die spätere Geschiebeumlagerung begünstigt.

Entwicklung
Auch in den aufgeweiteten Abschnitten entwickelte sich das ursprünglich erstellte Niederwassergerinne infolge des Hochwassereignisses nicht erwartungsgemäss. Aufgrund der grösseren Sohlenbreite und dank des Pflanzenwuchses ist aber zu erwarten, dass sich in diesen Abschnitten wieder ein variabler Niederwasserbereich einstellt.
10-58 Vor dem Ausbau im April 2010.
Beispiele für Fließgewässer im Siedlungsgebiet mit eingeschränktem Handlungsspielraum

Staffeleggbach
Unterueken, Ueken AG

Kennwerte
Abflüsse:
- $Q_{347} = \text{ca. 26 l/s}$
- $HQ_{2.5} = \text{ca. 10 m}^3/\text{s}$
- $HQ_{100} = \text{ca. 29 m}^3/\text{s}$

Ø Sohlengefälle: 0.7 %
Geschiebeführung: mittel
Bau: 2001 – 2002

Ausgangslage

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise
Mit dem Einbau von Hochstaudensoden, in die Sohle eingelassenen Blöcken und anstehendem Sohlenmaterial wurde ein Niederwassergerinne mit seitlichen Banketten in die zur Verfügung stehende Gewässersohle modelliert. Die Einbauten schaffen Furt-Kolk-Sequenzen und fördern die notwendige Breiten- und Tiefenvariabilität.

Risiken und Probleme

Entwicklung

Zielzustand für diesen Abschnitt war der Bau eines vielgestaltigen, bepflanzten Gewässers, wo immer möglich mit Böschungen und einem Niederwassergerinne in der breiten Gewässersohle. Der Bach soll sich nach dem Bau wieder zu einem prägenden Element im Dorfbild entwickeln.

10-65 August 2002. Die eingebrachten Hochwässerdende entwickeln sich schnell und bilden Fixpunkte, um welche das Niederwasser fließt.
Niederwassergerinne

Beispiele für künstliche Fließgewässer im Siedlungsgebiet

Dänkelbach
Lengnau AG

Kennwerte
Abflüsse:
\[Q_{25} = \text{ca. } 5 \text{ l/s} \]
\[HQ_{25} = \text{ca. } 1 - 1.5 \text{ m}^3/\text{s} \]
\[HQ_{100} = 4.3 \text{ m}^3/\text{s} \]
Ø Sohlengefälle:
ca. 2 %
Geschiebeführung:
gering, Ablagerungen von Feinmaterial vorhanden
Bau:
2006

Ausgangslage

Charakteristik des Gewässers und Morphologie

Massnahmen und Bauweise

Risiken und Probleme

Entwicklung

10-75 November 2006. Hinter jedem Querriegel wurde mit Lehm abgedichtet, damit das Wasser nicht unten durchsickert.

10-77 August 2013. Nun ist die Fischwanderung dank des künstlichen und harten Niederwassergerinnes wieder möglich.
Dorfbach Küsnacht
Küsnacht ZH

Kennwerte
Abflüsse: \(Q_{347} = \text{ca.} 33 \text{ l/s} \)
\(HQ_{2-5} = 10 - 15 \text{ m}^3/\text{s} \)
\(HQ_{100} = 40 \text{ m}^3/\text{s} \)
Ø Sohlengefälle: ca. 2.5 %
Geschiebeführung: mässig
Bau: 2011 – 2013

Ausgangslage
Der Dorfbach Küsnacht mündet in den Zürichsee und ist eines der bedeutendsten Laichgewässer der Seeforelle.
Das 12 km² grosse Einzugsgebiet gliedert sich in einen flachen Oberlauf zwischen Pfannenstiel und Forch mit verästeltem Gewässersystem, dem anschliessenden, stark eingeschnittenen Tobel sowie in den Unterlauf im Siedlungsgebiet von Küsnacht. Als Folge des verheerenden Hochwassers von 1778 wurde die Tobelstrecke mit zahlreichen Sperren verbaut und der Bach im Siedlungsgebiet kanalisiert.

Charakteristik des Gewässers und Morphologie

Der Dorfbach verfügt über ein geringes bis mittleres Geschiebeaufkommen. Bei den regelmässig auftretenden Hochwasserereignissen wird vor allem Feingeschiebe mit Korngrössen bis zu einem Durchmesser von 4 cm transportiert, wobei es bei abnehmendem Abfluss an morphologisch günstigen Stellen (Flachstrecken, hinter Blöcken, an geschützten Uferbereichen) abgelagert wird. Bei grossen Hochwasserereignissen wird auch Grobgeschiebe mit Kornzähmmern bis 15 cm in den See transportiert.

Massnahmen und Bauweise
Zwischen 2011 und 2013 wurden in die untersten drei Sohlrampen Rinnen eingebaut, die mit Blöcken strukturiert wurden und in denen der Abfluss bei Niederwasser konzentriert wird. Die 0.8 m tiefen und bis 2.8 m breiten Rinnen bestehen aus einer Betonplatte mit seitlichen Winkelplatten. Die Strukturiierung erfolgte mit seitlich angeordneten Blockgruppen und Sohlschwellen aus Blöcken. Am oberen Ende der Rinne besteht ein trichterförmiger Einlauf mit Vorbecken aus einbetonierten Blöcken.

Risiken und Probleme

Entwicklung

Beispiele für künstliche Fließgewässer im Siedlungsgebiet

Dorfbach Spreitenbach

Spreitenbach AG

Kennwerte
Abflüsse: \(Q_{27} = \text{ca. 10 l/s} \)
HQ_{2,5} = 5 \text{ m}^3/\text{s}
HQ_{100} = 15 \text{ m}^3/\text{s}
(max. 3 \text{ m}^3/\text{s}
 für den offenen Kanal)
Ø Sohlengefälle: 3 \%
Geschiebeführung: keine (Geschiebesammler
und Sohlsperren im Wald)
Bau: 2004 bis 2005

Massnahmen und Bauweise

Ausgangslage

Charakteristik des Gewässers und Morphologie

Risiken und Probleme

Entwicklung
Die eingepflanzten Hochstauden haben sich schnell in der Sohle verwurzelt. Durch den Eintrag von Saatgut, aber auch durch Wurzelbrut hat sich der Saum in kurzer Zeit über die ganze Länge geschlossen. Er beschattet im Sommer den Wasserlauf.

Bildverzeichnis

<table>
<thead>
<tr>
<th>Bild-Nr.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Definition</td>
<td>Kanton Zürich, AWEL, Abteilung Wasserbau</td>
</tr>
<tr>
<td>1-1 bis 1-4, 1-6</td>
<td>Seippel Landschaftsarchitekten GmbH, Wettingen</td>
</tr>
<tr>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>1-4 bis 1-14, 1-16</td>
<td></td>
</tr>
<tr>
<td>2 Gesetzliche Rahmenbedingungen</td>
<td>Kanton Aargau, Sektion Jagd und Fischerei</td>
</tr>
<tr>
<td>2-1</td>
<td></td>
</tr>
<tr>
<td>3 Ökologie</td>
<td>Seippel Landschaftsarchitekten GmbH, Wettingen</td>
</tr>
<tr>
<td>3-1</td>
<td>WFN - Wasser Fisch Natur, Gümmenen</td>
</tr>
<tr>
<td>3-2, 3-4, 3-6</td>
<td>EAWAG, Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz, Dübendorf</td>
</tr>
<tr>
<td>3-3, 3-4, 3-6</td>
<td>WFN - Wasser Fisch Natur, Gümmenen</td>
</tr>
<tr>
<td>3-5</td>
<td>Kanton Zürich, AWEL, Abteilung Wasserbau</td>
</tr>
<tr>
<td>3-7</td>
<td>http://commons.wikimedia.org/wiki/File:Calopteryx_Luc_Viatour.JPG</td>
</tr>
<tr>
<td>4 Ziele und Nutzen</td>
<td>Archäologie und Museum Baselland, d2_0006021, Fotosammlung Theodor Strübin (1908-1988)</td>
</tr>
<tr>
<td>4-1</td>
<td>WFN - Wasser Fisch Natur, Gümmenen</td>
</tr>
<tr>
<td>4-2, 4-3</td>
<td></td>
</tr>
<tr>
<td>5 Grundsätze</td>
<td>Flussbau AG, Zürich</td>
</tr>
<tr>
<td>5-4 bis 5-7, 5-9, 5-10</td>
<td></td>
</tr>
<tr>
<td>6 Systemanalyse</td>
<td>Seippel Landschaftsarchitekten GmbH, Wettingen</td>
</tr>
<tr>
<td>6-2</td>
<td>Hansjörg Egger, Uster</td>
</tr>
<tr>
<td>6-3</td>
<td>Seippel Landschaftsarchitekten GmbH, Wettingen</td>
</tr>
<tr>
<td>6-4, 6-7, 6-9, 6-11</td>
<td>Flussbau AG, Zürich</td>
</tr>
<tr>
<td>6-5, 6-6</td>
<td>Kanton Luzern, vif, Abteilung Naturgefahren</td>
</tr>
<tr>
<td>6-8</td>
<td>Kanton Zürich, AWEL, Abteilung Wasserbau</td>
</tr>
<tr>
<td>6-10</td>
<td></td>
</tr>
<tr>
<td>7 Projektierung und Bau</td>
<td>Flussbau AG, Zürich</td>
</tr>
<tr>
<td>7-3, 7-6 bis 7-8, 7-12 bis 7-14, 7-16</td>
<td>Kanton Zürich, AWEL, Abteilung Wasserbau</td>
</tr>
<tr>
<td>7-4, 7-11</td>
<td>Kanton Aargau, Sektion Wasserbau</td>
</tr>
<tr>
<td>7-5, 7-9, 7-10, 7-15, 7-17</td>
<td></td>
</tr>
<tr>
<td>8 Pflege und Unterhalt</td>
<td>Seippel Landschaftsarchitekten GmbH, Wettingen</td>
</tr>
<tr>
<td>8-1</td>
<td>Kanton Zürich, AWEL, Abteilung Wasserbau</td>
</tr>
<tr>
<td>8-2 bis 8-4</td>
<td></td>
</tr>
<tr>
<td>9 Zeit</td>
<td>Kanton Aargau, Sektion Jagd und Fischerei</td>
</tr>
<tr>
<td>9-1 bis 9-4</td>
<td>Seippel Landschaftsarchitekten GmbH, Wettingen</td>
</tr>
<tr>
<td>9-5, 9-6</td>
<td></td>
</tr>
</tbody>
</table>
10 Beispiele aus der Praxis

Sense
10-1 Flussbau AG, Bern
10-2 WFN - Wasser Fisch Natur, Gümmenen
10-3 Kanton Freiburg, Tiefbauamt

Reppisch Stallikon
10-4, 10-5, 10-7 Kanton Zürich, AWEL, Abteilung Wasserbau
10-6 Hansjörg Egger, Uster

K Hofibach
10-8 bis 10-13 Kanton Zürich, AWEL, Abteilung Wasserbau

Lugibach
10-14, 10-16 Kanton Aargau, Sektion Wasserbau
10-15, 10-17 bis 10-19 Seippel Landschaftsarchitekten GmbH, Wettingen

Leugene
10-20 bis 10-27 WFN - Wasser Fisch Natur, Gümmenen

Reppisch Birmensdorf
10-28 bis 10-34 Flussbau AG, Zürich

Enziwigger
10-35, 10-37, 10-38 Kanton Luzern, vif, Abteilung Naturgefahren
10-36 Flussbau AG, Zürich

Lüthern
10-39 bis 10-42, 10-44, 10-45 Kanton Luzern, vif, Abteilung Naturgefahren
10-43 Schubiger Bauingenieure AG, Hergiswil

Staffeleggbach Unterdorf
10-46 bis 10-53 Seippel Landschaftsarchitekten GmbH, Wettingen

Altlauf Enziwigger
10-54, 10-55 Kanton Luzern, vif, Abteilung Naturgefahren
10-56, 10-57 Seippel Landschaftsarchitekten GmbH, Wettingen

Eibach
10-58 bis 10-63 Kanton Basel-Landschaft, Tiefbauamt

Staffeleggbach Unterueken
10-64 bis 10-71 Seippel Landschaftsarchitekten GmbH, Wettingen

Dänkeligbach
10-72, 10-74, 10-77 Kanton Aargau, Sektion Jagd und Fischerei
10-73, 10-75, 10-76 Kanton Aargau, Sektion Wasserbau

Dorfbach Küsnacht
10-78 bis 10-80 Flussbau AG, Zürich

Dorfbach Spreitenbach
10-81 bis 10-89 Seippel Landschaftsarchitekten GmbH, Wettingen
Die Herausgeberschaft dankt den Initiatoren des Projektes, Mario Koksch und Matthais Oplatka, sowie Gianni Paravicini für die inhaltliche und grafische Beratung.

Ein herzlicher Dank für die fachliche Unterstützung und das zur Verfügung gestellte Bildmaterial geht an:

Marco Achermann, Philipp Amrein, Daniel Arnold, Walter Baumann, Paul Dandliker, Albert Dillier, Thomas Gebert, Andreas Hertig, Thomas Hofmann, Lukas Hunzinger, Fabienne Kaufmann, Markus Kunz, Claude Meier, Jean-Claude Raemy, Rolf Mosimann, Sara Ragonesi, Sandro Ritler, Michael Schaffner, Alfred Schaltegger, Peter Scheiwiller, Michael Schluh, Albin Schmidhauser, Ueli Schwenk, Patrick Steinmann, Claudio Wiesmann, Urs Zehnder.

Herausgeber
Kanton Luzern, Verkehr und Infrastruktur (vif)
Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft (AWEL)
Kanton Aargau, Departement Bau, Verkehr und Umwelt (BVU)

Autoren
Sylvia Durrer, dipl. Umwelt-Ing. ETH, Kanton Luzern, vif, Abteilung Naturgefahren
Dr. Arthur Kirchhofer, lic. phil. nat., WFN – Wasser Fisch Natur, Gümmenen
Dr. Ueli Schälchli, dipl. Kultur-Ing. ETH, Flussbau AG SAH, Zürich
André Seippel, dipl. Ing. FH Landschaftsarchitekt BSLA SIA, Seippel Landschaftsarchitekten GmbH, Wettingen
Pascal Sieber, Dipl. Geograph, Kanton Zürich, AWEL, Abteilung Wasserbau
Christian Tesini, Bsc. Umwelt-Ing. ZFH, Kanton Aargau, BVU, Sektion Jagd und Fischerei

Illustrationen
Maude Léonard-Contant, Luzern

Gestaltung
Fry & Partner, Zürich

Bildredaktion
Gianni Paravicini, Kanton Luzern, vif, Abteilung Naturgefahren

Textredaktion
Carsten Stütz, Zürich

Druck
Somedia Production, Chur

Bezugsadresse
Kanton Luzern, Verkehr und Infrastruktur (vif), Arsenalstrasse 43, Postfach, CH-6010 Kriens 2 Sternmatt
www.vif.lu.ch

Auflage
1’500 Stk.

© 2014
Kanton Luzern, Verkehr und Infrastruktur (vif)
Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft (AWEL)
Kanton Aargau, Departement Bau, Verkehr und Umwelt (BVU)

ISBN 978-3-271-60001-8